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Alternative formulation of the variational method for 
systems with an infinite number of degrees of freedom: 
application to Ising models 
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Dipartimento di Fisica, Universita’ di Bari, Italy and Istituto Nazionale di Fisica Nucleare, 
Sezione di Bari, Italy 

Received 30 April 1990 

Abstract. For systems with an infinite number of degrees of freedom, the Rayleigh-Ritz 
quotient of the standard variational method is analysed from an alternative point of view. 
Its numerator and denominator are treated as statistical models having the same correlation 
length. The approach is developed in the framework of the transfer matrix formalism and 
applied to Ising models. It allows us to obtain exactly the correlation length along a row 
or column of the anisotropic square Ising model, for T L  T,. Approximate applications of 
the method to the two-layer square and 3~ simple cubic Ising models are also given. In 
these cases quite reliable critical curves are obtained through an essentially analytical 
procedure. 

1. Introduction 

In quantum mechanics, when we consider a system with a finite number of degrees 
of freedom, the variational approach provides a powerful method for the calculation 
of the ground-state energy ( E o ) .  The starting point is the Rayleigh-Ritz ( R R )  quotient 

where H is the Hamiltonian and IC, a trial function with adjustable parameters {ai}. 
The minimum of the RR quotient with respect to the {ai}, allows us to obtain the best 
approximation for Eo.  At the same time, we get an approximation for the ground-state 
wavefunction. However, while we can obtain accurate values for E o ,  the properties of 
the ground-state wavefunction can be poorly described by the trial function 4, with 
the parameters {ai} fixed by the minimum condition. This feature of the variational 
method becomes more relevant when we consider systems with an infinite number of 
degrees of freedom. In quantum field theory, for example, there is a particular interest 
in the ground-state wave functional, the actual value of Eo being subtracted from the 
spectrum of the Hamiltonian. In this case, the variational principle can be used for 
the determination of the parameters introduced in a trial functional. Usually these 
parameters are related to some physical properties of the system. Such a procedure 
has been analysed by Feynman [ 11: it can happen that the minimum of the RR quotient 
is attained for values of the parameters which are very different from physically 
reasonable expectations. The origin of this difficulty has been called by Feynman 
sensitivity of the variational method to high frequencies. In field theory these give the 
most contribution to the energy. 
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We have a similar situation in statistical mechanics. In this case the quantity which 
is usually calculated through a variational procedure is the free energy. The starting 
point can be the Gibbs variational principle [ 2 ] ,  from which the mean-field approxima- 
tion is deduced. On the other hand, if the partition function is expressed through a 
transfer matrix L, the standard variational method can be applied by considering again 
the RR quotient [3-51 

which gives a lower bound to the highest eigenvalue of L. Then an approximation to 
the free energy is obtained through the 

(1 .3)  

However, even a good approximation for the free energy can be unreliable for its 
derivatives, in which we are usually interested (magnetization, susceptibility, heat 
capacity). This is particularly true in the critical region, where a kind of discrepancy 
appears. A critical temperature can be deduced from (1 ,3) ,  but the parameters {ai} 
determined by the maximum condition lead to a vector $ devoid of long-range 
correlations. 

With the aim of overcoming this type of difficulty, we propose in this paper a 
reformulation of the variational procedure. In order to fix the ideas, the analysis will 
be made in the framework of the Ising models. 

In this alternative formulation we make use of the transfer matrix formalism, but 
we avoid the determination of the parameters {ai} of a trial vector $ through (1 .3) .  
The basic ingredients are again the numerator and the denominator of the RR quotient, 
but these quantities are treated in a different way. First of all, we consider them as 
statistical models having as probability distributions 

where x, y are sets of random variables (the Frobenius-Perron theorem requires that 
$ ( x )  is positive). Then we demand that some relevant statistical quantities are the 
same both for P , ( X )  and P N ( x , y ) .  This requirement is simply a consequence of the 
property that, when $ ( x )  is the eigenvector of L associated to the highest eigenvalue, 
P , ( x )  is the marginal distribution for the set x, obtained from the joint distribution 

A fundamental quantity of probability distributions in statistical mechanics is the 
correlation length, which has a crucial role in the scaling hypothesis [2]. Our first 
condition, which we will call CLE (correlation length equality), is that PD and PN(x ,  y)  
have the same correlation length. In this paper we report the consequences of this 
condition. 

The details of the above approach are presented in section 2, in the framework of 
the anisotropic square Ising model. We consider only the region T 3  T,. By making 
use of an ansatz already utilized in the standard variational procedure, we show that 
our CLE leads to the exact correlation length given by the Onsager solution, for all 
T 3 T,.  In section 3 we consider a two-layer Ising film, for which an exact solution is 
not known. In this case the C L E  does not determine completely the correlation length. 
However, we show that it acts as an existence condition for the phase transition, 

P N ( X ,  Y ) .  
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allowing us to calculate quite reliable lower bounds to the critical point. Furthermore 
we show that, for T near T, ( T  > T,) the formalism can be developed on the basis of 
the perturbation method and the analysis can be made in an analytical way. The same 
type of results are obtained in section 4, for a cubic anisotropic three-dimensional 
Ising model. The analysis of this model makes use of the developments of the previous 
section. In the last section we discuss several open problems and we make some 
comments on further conditions to be imposed on P, (x )  and P N ( x , y )  and on the 
possible role of other probability distributions, which are extensions of the numerator 
of the R R  quotient. 

2. The anisotropic two-dimensional square Ising model 

Let us consider a two-dimensional square lattice with m rows and n columns. The 
anisotropic Ising Hamiltonian is 

where J ,  > 0 and s , , ~  = kl. We take, in general, J1 # J 2 .  In fact such a situation allows 
us to see better the meaning of our approach. We impose toroidal boundary conditions. 

Let (+ = ( s1 , s2, . . . , s,) be a spin configuration of a column and Lz the symmetrized 
transfer matrix which connects two adjacent columns. The partition function can be 
written in the form 

with 

(si = *1, s: = *l, K ,  = J , / k T ) .  
We can also consider the transfer matrix L1 which connects two adjacent rows 

(2.4) 

where G = . . , ;,,) is a spin configuration along a row. We will be interested in the 
thermodynamic limit m, n + CO. 

Now, let us fix our attention on a given column j and consider the probability 
P ( u )  of a spin configuration U on this column, regardless of the configurations of all 
other columns. 

We have 

In the limit n += cz), by making use of the spectral representation of L 2 ,  we obtain [6,7] 
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where 41(a) is the eigenvector of L 2 ( q  a’) associated to the highest eigenvalue 
( /141112 = X ( o )  4:(a)).  Equation (2.6) gives a very useful statistical interpretation of 
41(a), which will be the starting point of our analysis. In the following we will always 
take T >  T,. 

be the correlation length of our model, along a column; we denote by k2 the 
analogous quantity along a row. It is useful to give an explicit expression of and 
t2 in terms of the transfer matrices L1 , L 2 .  If Aii’  is the maximal eigenvalue of Li and 
A?) the nearest eigenvalue to it, then [7] 

Let 

(2.7) 

The mathematical mechanism which is responsible for the critical behaviour is the 
eigenvalues degeneracy [6, 71 (A‘,”= Ai2 ) ,  A‘,’)= Ai’)) .  We will fix our attention on 
these fundamental quantities. 

As a trivial consequence of (2.6), we have that the correlation length associated to 
the distribution C$~(a)/~~C$l~~2 is equal to tl. The first step of our approach is the 
introduction of a trial distribution F(a) (or, equivalently, of a trial vector &,(a))  
having the property to reproduce el through the ratio of two eigenvalues. We consider 
the ansatz 

(2.8) ) d , ( a ) = e x p ( A ( T i  1 = 1  c s,s,+1 * 

m 

Now, 1161112 is the partition function of a one-dimensional Ising model, to which is 
associated a 2 x 2 transfer matrix with eigenvalues 

y1 = 2 cosh 2A( T )  y 2  = 2 sinh 2A( T ) .  (2.9) 

Then P(a) = &;(a)/  11 11’ has the desired property, if A( T)  is such that 

(2.10) 

that is 

A( T )  = tanh-’ (2.11) 

A( T)  + W .  

We have again the degeneracy mechanism at the critical point, with 

As the next step, we generalize (2.6). Let P ( a ,  a’) be the probability of a spin 
configuration (a, a’) on two adjacent columns, regardless of the configurations of all 
other columns. 

We have 

&(a, a’)L;-I(a’,  a )  P( a, a’) = 
Tr Lg (2.12) 

By making use again of the spectral representation of L 2 ,  we obtain ( n  + CO) 

P ( a ,  a’) = N41(a)L2(a, a’)41(”) (2.13) 
with 
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Of course P ( a )  is the marginal distribution for the set a, deduced from the joint 
distribution P(a ,  a’). So, all the statistical quantities along a column are the same for 
both of them. 

Now, let us introduce our ansatz ~ $ , ( c r )  in (2.13). We get a distribution 

&a, a’) = fi&(cr)L2(a, a’)&(a‘) (2.14) 

which, as a rule, does not reproduce exactly &a) after the summation over the set 
U’. However, our ansatz will be consistent if at least the large distances behaviour of 
the pair correlation function along a column is the same for both &a) and P(a, U ’ ) ,  

This requirement, which we have called CLE, leads to an equation for ll. 
To the distribution &a, cr‘) is associated the partition function of a 2 x  m Ising 

lattice, with a 4 x 4 transfer matrix 

I ( s , ,  s21s;, s;) = exp (T - sls2 ) exp [ (A( T )  +$)(sIs; + s2s ; ) ]  exp ($5;~;) . (2.15) 

Let ai (i  = 1 , .  . . , 4 )  be the eigenvalues of I ,  with 6,  > a,>. . . . It is easy to see that 

6 ,  = %{cosh K2 cosh( K I  + 2A( T ) )  + [ 1 +sinh2 K, cosh2( K1 +2A( T))]1’2} 

a2 = 2 eK2 sinh( K1 + 2A( T ) ) .  

The CLE demands that 

(2.16) 

(2.17) 

Explicitly, (2.17) gives 

eKZsinh(K, +2A( T ) )  
cosh K2 cosh( K, + 2A( T ) )  + ( 1  + sinh’ K2 cosh2( K,  + 2A( T ) ) ) ” 2 ’  tanh 2A( T )  = (2.18) 

Formally, (2.18) looks like a generalized version of the usual mean-field equation 
for the order parameter, with the difference that the effective coupling constant A( T )  
is involved. 

Let us introduce the parameter KT [8], through 

tanh K, = 

Then, it can be easily checked that (2.18) is solvable only for KT z K2.  For KT > K2,  
we have only one solution given by 

tanh 2A( T) = e-2(KT-KZ’. 

From (2.11) we obtain 

(2.19) 

1 
51 
-=2(KT-K2) (VKT> K2). (2.20) 

Our expression for 5,, agrees with the exact result [8]. The equation of the critical 
curve is 

K T - K 2 = 0  
which is equivalent to the well known exact result 

sinh 2K, sinh 2K2 = 1.  

The region K T a K2 corresponds to T 3 T,. 
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It is useful to make some comment about the above procedure. In the standard 
variational approach, the ansatz &,(a) has been already utilized for the isotropic square 
Ising model [3,4]. The parameter A( T )  is determined by 

(2.21) 

In this way an approximation to the free energy (which is related to AY)) and an 
approximate value Tc of T, is obtained. The results are good, but do not agree with 
the exact values. In the critical region it happens that the sup is attained for finite 
values of A( T )  [4]. Essentially we have shown that in the numerator and denominator 
of the RR quotient are hidden some statistical properties, which have a relevant role. 
In the usual variational procedure, based on (2.21), only y, and 6, are present in the 
limit m +CO. 

Our function $,(a), with A( T )  given by (2.19), is not the exact eigenfunction of 
L2(a ,  a’) associated to A!2). The RR quotient with this function gives only an approxima- 
tion to AY), which is generally worse than the value given by (2.21). However, &(a) 
through P(a, a’), allows us to reproduce exactly a relevant quantity associated to the 
other transfer matrix L, , that is the ratio A!l) /Ay) .  Of course, by exchanging the role 
of L2 and L1, we can also obtain exactly t2. In the isotropic case K1 = K2 = K, we 
have only one transfer matrix L (if rows or columns are considered) and our &,(cT), 
while it does not reproduce A , ,  allows us to obtain exactly the ratio Al/A2 of the two 
highest eigenvalues of L, which, in principle, are associated to two different eigenfunc- 
tions of L. 

3. A two-layer Ising film 

In this section we analyse the role of the CLE for a two-layer Ising film, made of two 
interacting isotropic square lattices. The Hamiltonian of the model is 

m n  

m n  

where J ,  is the ((horizontal)) isotropic coupling, while J2 is the vertical coupling. We 
impose periodic conditions in the two horizontal planes and denote by (a, T) = 
(s, , . . . , sm ; U,, . . . , U,) a spin configuration on a vertical section j of the layer. The 
symmetrized transfer matrix L which connects two adjacent vertical sections is given by 

with 

i = l  

m 

sisi+, + C uiuitl 
i = l  

( K ~  = J i / k r ) .  
We proceed as in the previous section, by fixing the attention on a vertical section. 

The probability P(a, T) of a spin configuration on this section is related to the 
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eigenfunction of L associated to the highest eigenvalue. We parametrize P(u, T )  by 
introducing 

so that 

The trial function i , ( ~ ,  7) is the simplest generalization of (2.8), which takes into 
account of the vertical interaction through an effective coupling C (  T ) .  

To F,,(u, T )  is associated a transfer matrix which connects two adjacent segments 
of the vertical section. This matrix has the same structure as the I of (2.15). Its highest 
eigenvalues, which control the large distance correlations, are given by 

E ]  = 2[cosh 2C( T )  cosh 4B( T )  + ( 1  +sinh2 2 C (  T )  cosh’ 4 B (  T)) ” ’ ]  

E 2  - 
(3.5) 

sinh 4B( T )  - 2 e2C‘T’ 

with 

adjacent vertical sections of the layer 

> E ~ ,  for finite B (  T ) .  We take always T > T,. 
According to our previous considerations, we consider also the distribution for two 

(3.6) P,(U, 7; C’, 7‘) = f i&(U,  T ) L ( U ,  7; U‘, T ’ ) i , ( U ’ ,  7’) 

To this distribution is associated a 16 x 16 transfer matrix t ,  given by 

s2, s3, s,isI, si ,  s i ,  sk) 

with 

f(s,, s2,  s3, s4) = e x p [ t ( ~ ( ~ ) + t ~ , ) ( ~ , ~ , + s , ~ 4 ) + f ~ , ( s 2 s 3 + s 4 s l ~ ]  

(s, = *l ,  s: = * l ) .  
Let us denote by vk ( k  = 1 , 2 , .  . . , 16) the eigenvalues of t ,  77, and 772 being the two 

highest, with q1 > 77’. Our CLE demands that 

In order to handle the eigenvalue problem of the r matrix, it is useful to make use 
of the Kaufmann formalism [ 2 ] .  Let us consider the unit 2 x 2  matrix I and the 2 x 2  
Pauli spin matrices 

x=(, 0 1  o) . = ( ’  O ) .  
0 - 1  

We introduce the 16 x 16 matrices Xi, Zi ( i  = 1 , .  . . , 4 ) ,  defined through direct 
products 

x, = X O  I O  I O  z X,=ZOXOZOZ . . .  
Z 1 = Z O I @ I O I  Z*=IOZOZOZ . .  
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where 

with 

and 

From (3.9) it 

where i j , ,  i2 

(3.10) i= i l l 2  e € J ( T ) X j l / 2  
0 0 

tanh e( T )  = exp(-(2B( T ) +  K , ) ]  (3.11) 

] (3.12) 
K 
2 

io/2 = exp [ ( Z2Z3 + Z,Z,) + i( C (  T )  + iK,)(  Z,Z, + Z3Z4) 

E = x, + x 2 +  x, + x4 
follows that 

(3.13) 

are the two highest eigenvalues of i( G l  > i2). So, for our problem, we 
can limit ourselves to the eigenvalue problem of the i matrix. This can be further 
simplified by making use of parity projection operators [2], which allow us to split 
in the sum of two commuting matrices of effective order eight. 

We can write 
i= i, + i2 = P+ ip, + p-  ip- (3.14) 

where 
P + = f ( l +  V )  P - = f ( l -  V )  

and 
4 

v =  n xi. 
i = l  

These operators have the following well known properties. Let 

1 
/ ~ ( , l , s 2 , S 3 , s 4 ) ) = - ( / S  s s S ~ ) + ~ - S ~ , - S Z , - S ~ , - S ~ ) )  4 2  I ’  2 ’  3’ 

(3.15) 1 
/ @ ( s l , s z , s 3 ,  s 4 ) ) = 3 ( l s i ,  sz, s3, S ~ ) - I - S ~ , - S Z , - S ~ , - S ~ ) ) .  

Then 

P+IWs , ,  s 2 ,  s3, s 4 ) )  = tws , ,  s2, s3, s 4 ) )  

P+l@(s,, s2, s3, s 4 ) )  = 0 
and an analogous equation for P- .  

If 

(3.16) 
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then 7jl and 7j2 could be determined analytically for every T, through the Kaufmann 
method [2]. But we expect that, in general, the above equation will not be satisfied. 
For example, when J2 = 2J1 (which corresponds to periodic conditions in the vertical 
direction), (3.16) gives C( T )  = 0. However, within our approach, (3.9) is very useful 
for T near T,, a region in which we are particularly interested. In fact, for such values 
of T, we can calculate 7jl and 7j2 analytically by making use of the perturbation method. 

For T +  T,, there are long-range correlations along our vertical section. Then, 
according to the meaning of the distribution FD(q T), we must have 

E l  

T+ Jc E 2  
lim - = + 1 .  (3.17) 

From (3.5) it follows that the above limit is satisfied only if 

lim B(T)=+cc (3.18) 
T-T, 

as can be expected. From ( 3 . 1 1 )  we deduce that 

lim e ( T ) = O  (3.19) 
T- T, 

and 

lim i= io. 
T- T, 

(3.20) 

Equation (3.12) gives immediately the eigenvectors and the eigenvalues of io. So, 
for small e ( T ) ,  that is for T near T,, il and 7j2 can be determined through the first 
terms of an expansion in powers of e ( T ) .  To this end the decomposition given by 
(3.14) is useful. The highest eigenvalue of r0, which we call A I ,  is doubly degenerate 
(we take J2 # 0 and C( T) # 0). When e( T) # 0, we have the splitting of A ,  into 7jl and 
G 2 .  However, A I  is not degenerate for the two matrices P+ioP+ and P-ioP-, whose 
eigenvectors are given by (3 .15) .  So 7jl and 7j2 can be obtained by applying non- 
degenerate perturbation theory to ?, and i2 respectively. The details of this calculation 
are given in the appendix. The splitting of A I  appears at the fourth order of the 
perturbative expansion. We need also the sixth-order terms in order to have an 
expression for the correlation length. 

Let 

il = A ~ ( I +  c2( T)e2(  T )  + c4( 7-)e4( T) + c6( T)e6(  T )+o(  e ' ) )  
6 2  = A , (  1 + d2( T ) 0 2 (  T) + d4( T)04( T )  + d6( T)e6(  T) + o( e')) .  

Since c2( T )  = d2(  T )  (A.13), we have 

(3.21) 

(3.22) 

(3.23) 
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So, our correlation length (( T), along a vertical section, is given by 

1 -- - 2 coth 2 C (  T) e-8BcT’ 
5( T )  

(3.24) 

at the order of our calculations. It is useful to give the expansion of (3.22) in powers 
of exp(-4B( T ) ) .  Then our CLE ((3.8)  and (3.13)) leads to 

1 
e-2KlA( T) - - - c4( T )  - d4( T )  - 2  e4Kl coth 2 C (  T )  (3.25) 

(tanh ’2” ( T ) )  ’ I 2  

P2( T) 

for T near T,, with 

A(T)= (3.26) 

Equation (3.25) gives the correlation length ( (T)  approximately in terms of the 
original coupling K1, K 2  of the model and of an additional effective coupling C( T), 
which describes the vertical interaction between the spin of a vertical section resulting 
from the sum over all the other configurations. So, if we use the trial function of (3 .3) ,  
we need a further condition for the complete determination of ( ( T ) .  This problem 
will be investigated elsewhere. However, as we show here, the CLE has a relevant 
physical consequence and quite reliable quantitative results can be deduced from 
(3.25), without the knowledge of C( T ) .  

The explicit expression of A( T)  is given by (A.14). It turns out that A( T )  is always 
positive and finite for any finite value of C( T ) ,  K ,  and K Z .  From (3.25) it follows that 
we must have 

c4( T )  - d4( T )  > 2 e4Kl coth 2 C (  T )  

for T > T,, while 

c4( T,) - d4( T,) = 2 e4K1c coth 2 C (  T,) 

gives the critical curve. 
It is useful to consider the ratio 

which, through (A.13) and (A.15), can be written explicitly in the form 

’( = cothf K ,  + C( T )  + fK2)[coth 2 K ,  + coth(2 K ,  + 2C( T )  + K,) 
e4Kl tanh(K,+C(T)+fK,)  co th2C(T)  

+ ~ 0 t h ( 2 C (  T)  + K2)] - 2 

(3.27) 

(3.28) 

(3.29) 

For fixed T (or K1, K 2 ) ,  we consider p (  T)  as a function of the unknown parameter 
C( T). This function, which is always positive, has the following behaviour 

lim p(Y)=+oo lim p (  T )  = e4Kl tanh 2 K , .  

Furthermore it has a single finite minimum point E (  T). Now, it results that, for any 
T lower than a finite value, which we call T:, p (  T) is greater than one for any value 
of C ( T ) .  Therefore, as a consequence of (3.25), we obtain the prediction that the 
disordered phase can exist only for T >  T:. Hence our procedure suggests that T: is 
a lower bound of the critical temperature T, 

T k s  T,. (3.30) 

C ( T ) - 0  C ( T ) - . + S  
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For T =  T : ,  we have that the minimum of p ( T ) ,  as a function of C ( T ) ,  is equal to 
one. In other words, T: is such that the equation of the critical curve is satisfied, and, 
at the same time, p ( T )  is stationary with respect to the variations of the parameter 
C ( T ) .  For T >  T ; ,  p(  T )  is lower than one only for a range of values of C ( T ) .  This 
range becomes more broad as T increases. 

The determination of lower bounds to the critical point is closely related to the 
problem of existence of a phase transition [9]. Usually, the standard variational methods 
(among these the mean-field approach) lead to upper bounds to T,.  Therefore it would 
be relevant to give a rigorous proof of (3.30). We are at present attempting to reach 
this goal. 

It is useful to give the actual values of T; .  We state the results in terms of K , ,  and 
K,, ( Ki ,  = J I /  k T ) .  The lower bound to T, becomes an upper bound to one of these 
quantities, the other being considered as a free parameter. Let 

K , c = f ( K , c )  

be the equation of the critical curve, with Kzc  E (0, +CO). The previous analysis allows 
us to calculate a critical curve 

K; \ ,= fA(K2c)  

with f A (  K , )  z - f ( K , ) ,  V K z .  The function f A (  K 2 c )  is reported in figure 1 (upper curve). 
It is a monotonous decreasing function which reproduces correctly both the limits 
K2c + 0 and K2c  -+ +CO. We have 

K,d=2 lim f A (  K,,) = K,d"* lim f A (  ICzc) = - 
K2c-0 K l c + + x  2 

where K,d=' = 0.44068 is the crittical point of the two-dimensional isotropic Ising model. 
For the two-layer Ising film, some numerical results have been reported in the 

literature [lo], in the two cases K ,  = K ,  = K and K ,  = 2K, = 2K. The numerical calcula- 
tions, based on series analysis, give 

(within an error of 9%) K ,  = 0.312 

2 1  

0 0 1  0 8  ' 2  ' 6  2 2 4  

42, 

Figure 1. The critical curves K f c = f A ( K 2 c )  for the two-layer Ising film (upper curve) and 
K fc = FA(  K Z c )  for the anisotropic cubic lsing model (lower curve). 
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when K ,  = K 2 .  In this case our result is K P  = 0.3235 ( T ,  = 1.037Tk). For K 2  = 2 K , ,  
the value 

K ,  = 0.276 

is obtained, while we have K :  = 0.2845 ( T ,  = 1.031 Tb). 

from a probability distribution 
The above approach can be extended to an n-layer Ising film. In this case we start 

@D( 9 u2 9 . . . 9 (+n ) 

where ui denotes a spin configuration along a horizontal line of a vertical section of 
the layer. Besides PD(u,, . . . , u,,) we have to consider the distribution 

~ ~ 2 ( ~ ~ , . . ~ , ~ ~ ) L ( ~ ~ , . ~ . , ~ ~ ~ ~ ~ , . , . , u ~ ) ~ D  -1 /2  (u{,...,uL) 

where L is the transfer matrix. If we introduce an effective horizontal coupling B( T )  
for the spins of a vertical section, then we will have 

lim B ( T ) = + w  
T+ T, 

for every finite n. So the analysis can be carried out through the perturbation method 
if T is near T,. The Ising films have an important role in our approach, as will be 
seen in the next section. 

4. A simple cubic Ising model 

As the last example we consider a cubic Ising model, with an isotropic coupling J, in 
the horizontal planes and a coupling J2 in the vertical direction. We denote by [si,j] a 
spin configuration on a fixed horizontal plane. Following the same procedure of the 
previous sections we parametrize the probability of a configuration [si,,], regardless of 
all the other configurations, by introducing 

so that 

(4.2) 

1 )  i, 1 1 2  is the partition function of an isotropic two-dimensional Ising model, with an 
effective coupling 2A( T ) ,  where T is the temperature of our three-dimensional model. 

Let [ ( T )  be the correlation length associated to two spins which belong to the 
same plane of the cubic lattice and also to the same row or column of this plane. The 
parameter A( T )  can be related to (( T ) .  From (2.20) we have 

-- - 4(A*( T )  - A (  T ) )  
5( T )  

I 

where A*( T )  is given by 

tanh 2A( T) = 

(4.3) 
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For T near T,, we can write 

with 

A( T,) =-. 
2 

The transfer matrix, which connects two adjacent vertical planes is 

with 

t ( [ s , , l )  =exp -E r.J ( ~ ~ , , ~ l + i , J + ~ l , , ~ , , , ~ i ) ) .  

Then, we consider the distribution 

r', 1 ; [ ' i , J ] )  = N61 ([ ' I , ,  1 )  L ( [ ' Z , J  1 I [ ' : , J ] )  61 ( [ ' i , J ] )  (4.7) 

which, as we see, is related to a two-layer Ising film. 
In order to calculate 5( T )  through p N ( [ s , , , ] ;  [si,,]) we make use of the results of 

the previous section. Due to equation (4.4) we are left only with the parameter C( T ) .  
The critical curve is given by 

exp(4A(T,)+2KIc) tanh 

2 2  

= I  

where e = C ( T c )  and A(T,)  is given by (4.5). 

the condition p (  T,) = 1 and ap( Tk)/~36 = 0. The critical curve 

L As in the previous section we have the prediction that T c 2  T ,  , with T: given by 

K?,= FA(Kzc) 

obtained in this way, is reported in figure 1 (lower curve). Again F A (  K2,) gives correctly 
the limits K 2 ,  + 0 and K 2 ,  + +W. We have 

lim FA(  K2,)  = K,d=2 lim F A (  K 2 c )  = 0. 
K2c+O K2<-X 

For K ,  = K 2  = K, we obtain 

K t  = 0.2419 

while Monte Carlo calculations and series analysis give K,=0.2217 [ l l ]  (T,= 
1.091 Tk) .  It is useful to compare this result with the lower bound TI, obtained by 
Frohlich et a1 by making use of the infrared bounds [9]: Tc= 1.14TIc. 
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5. Conclusion 

The previous approach can be extended to four dimensions. It can be seen that, in 
this case, we are led to consider a four-layer Ising film. For king films the C L E  is not 
sufficient to determine completely all the involved effective couplings. In the two-layer 
case, as we have seen, we need a further condition in order to fix the effective vertical 
coupling C (  T ) .  Of course, besides the correlation length, there are further relevant 
quantities associated to a probability distribution. Generally we can consider the 
moments. In statistical mechanics, an important property of a distribution is the 
susceptibility, which is related to the global behaviour of the pair correlation function 
through the ‘fluctuation-dissipation’ theorem [2]. In our approach, it will be useful to 
analyse the additional condition given by this relevant quantity. A further step can be 
the consideration of the heat capacity or of the four-points correlation function. Of 
course, if we have an external magnetic field H, there is a further effective coupling 
in the distribution P D ( x )  and a further condition involving the magnetization. 

We can also fix the attention only on the CLE condition. In this case, besides the 
distribution 

+ ( X ) U X ,  Y ) + ( Y )  

+ ( X ) U X ,  Y ) J Y Y ,  z ) + ( z ) ,  + ( x ) L ( x ,  Y ) U Y ,  z ) L ( z ,  w ) + ( w ) ,  . . . 
we can consider the distributions 

which are generalizations of (2.13). They can act as further constraints on the undeter- 
mined parameters. We are led, in this way, to an alternative version of the moment 
problem in a Hilbert space [12], when the degrees of freedom are infinite. 

These problems, as well as the region T <  T,, will be analysed in the next works. 
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Appendix 

We call A , ( i  = 1,. . . , 8 )  the eigenvalues of P+?,P+. These are also the eigenvalues of 
P- fop-. The eight eigenvectors of P, TOP+ are ordered in the following way 

PA= IW1, 1 ,1 ,1 ) )  IV3)=19(1, 1, -1, 1)) W2) = IW1,1,1,  -1)) 

I*‘$)= IWl, -1, 1, 1)) 

l*J=lWl, -1, -1 , l ) )  I ~ ~ ) = I w ,  - 1 , ~  -1)) (AI)  

IV5)=19(1, -1, -1, -1)) IYd = IW191, -1, -1)) 

where the 19(sl, s2, s,,_s,)) are given by (3.15). The same ordering defines the eight 
eigenvectors I Q i )  of P-t,P-.  

The A ,  are given by 

A I  = exp(2K1 +2C(  T) + K , )  A > =  A 3  = A 4 =  A 5  = 1 

A6 = exp( -2K1 + 2 C (  T )  + K,) A,=exp(ZK, - 2 C ( T ) - K 2 )  (A2) 
A,=exp(-2K,-2C( T ) - K , ) .  
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We make a perturbative expansion of G I  and f 2  to the sixth order of O(T).  To this 
end we write firstly 

The action of the powers of X on the vectors I*,) and IOl), follows from the basic 
relations 

XIISI , s2 s3 9 s4) = I-SI 9 s2 7 s3 9 s4) x21s1, s 7 ,  s3, s4)= I % ,  - s 2 ,  s3, s4). . . * (A31 

It turns out that 

C3 = 16X (A4) 

C2 = 41 (A51 

if the vectors are involved, while 

when we consider the vectors 10,). As a consequence of these relations, we can write 

i, = P+ ioP+ + P, VIP+ 

i2 = P- ioP- + P- V, P- 

where the perturbations are given by 
v - - ?1/2  [ ( e  + $ e 3  +%e5)z + ( $ e 2  + + e 4 +  $e6)x2]  ?;/2 

v - j l / 2  ('47) - [ ( e  +:e3 + & e 5 p  + 2e2+je4+&e6] i ; l 2 .  

Let 

Then 
6 

G I  = A l  + C ('Pll( V,Gl)k-l  V,IV,)+. . . . 
k = l  

6 

G 2 = A 1 +  1 (@ll(V2G2)k-1V21@l)+.  . . . 
k = l  
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where 

Now, if 6,  and 6, are written as in (3.21), by expanding a 1  and y y  in powers of 0, 
we obtain from (A9) the coefficients c,,  d,. Let 

We have 

A l + l  
c2 = d, = 2 - 

AI-1 

x [6 - ( A ,  - 1 ) * ] ~  + 2 ( A :  +6A: + 8 A l +  3)). 
Our a and p can be written in the form 

a = f[ coth 2 K1 + coth(2KI + 2 C( T) + K,) + ~ 0 t h ( 2 C (  T) + K,) - 31 
1 

l +  + 
sinh' 2K1 sinh2(2Kl+2C(T)+K,)  sinh2(2C(T)+K,) 

A13) 
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